

Theme: Towards Reconfigurable High-Performance Computing

Lecture 4

Platforms II: Special Purpose Accelerators

Andrzej Nowak CERN openlab (Geneva, Switzerland)

Inverted CERN School of Computing, 3-5 March 2008

iCSC2008, Andrzej Nowak, CERN openlab

Introduction

- Recap:
 - General purpose processors excel at various jobs, but are no match for accelerators when dealing with specialized tasks

• Objectives:

- Define the role and purpose of modern accelerators
- Provide information about General Purpose GPU computing

Contents:

- Hardware accelerators
- GPUs and general purpose computing on GPUs
- Related hardware and software technologies

Hardware acceleration philosophy

Popular accelerators in general

Floating point units

- Old CPUs were really slow
- Embedded CPUs often don't have a hardware FPU
- 1980's PCs the FPU was an optional add on, separate sockets for the 8087 coprocessor

Video and image processing

- MPEG decoders
- DV decoders
- HD decoders

Digital signal processing (including audio)

Sound Blaster Live and friends

Mainstream accelerators today

- Integrated FPUs
- Realtime graphics
 - Gaming cards
- Gaming physics
 - AGEIA PhysX gaming card
- Digital audio processing
 - Creative Sound Blaster X-FI
- Networking
 - KillerNIC
- Encryption
 - Add on and on-board dedicated crypto modules
- Platform development
 - AMD Torrenza (coprocessor integration initiative)
 - Intel/IBM Geneseo (PCIe extensions)

Special Purpose Accelerators

GPUs

Bobby wants to play a game

iCSC2008, Andrzej Nowak, CERN openlab

The rise of the GPUs

- Graphics Processing Units A mainstream, market-driven vector computing accelerator family
 - Simple operations
 - Large width and throughput
 - Medium frequencies

Modern GPU features

Dozens of processing cores

- Some cores usually end up disabled due to manufacturers' yield problems
- A lot of power consumed compared to CPUs ~150 W
- Very fast in vector calculations, up to hundreds of GFLOPS

Market driven features

- Main actors: Red, Green, Blue and Alpha
- DirectX 10 or 10.1 compatibility
- Different shader model support

Active ongoing development

GPGPU

- GPGPU General Purpose GPU computing
- GPUs are becoming more universal and versatile
- Vast amounts of processing power left unused what shall we do with it?
 - Stream processing
- Main pain lack of native 64-bit floating point support (double precision)
- The domain is moving forward chip makers are listening to the scientific community
- Is GPGPU the answer to your problem?
 - Large data set
 - High parallelism
 - Small amount of dependencies with the data set
 - 64-bit floating point is not required

Common GPGPU operations

- Stream filtering
 - Removing items from a group based on certain criteria
- Mapping
 - Run a function on elements inside a group
- Reducing
 - Perform calculations on a stream and yield a reduced result
- Scatter and gather
- Sorting
 - Sorting networks
- Searching
 - Parallel searches

Which problems can benefit from GPGPU?

- Algorithms and applications using the Fast Fourier Transform
- Audio processing and DSP
- Digital image and video processing
- Raytracing
- Weather forecasting
- Neural networks
- Molecular modeling
- Database operations
- Cryptography and cryptoanalysis

GPU drawbacks (1)

FP representation and precision

- Non-IEEE FP representation
- 128-bit data types but 32-bit precision
- Low-precision math ops
- High-precision math ops not always available, usually slow
- Native 64-bit operations and data types missing

Limited amount of simultaneous logic threads

- Even though the GPU might have many cores, it has certain limits imposed on threading
- Limited, high latency communication with the main memory and with the CPU (and sometimes with other cores)

GPU drawbacks (2)

Heat problems

- Modern cards can easily achieve 150W
- Projected Larrabee power is said to be around 150-200W

Feeding the beast

• A modern CPU is required to feed a modern GPU at full speed

Rudimentary development tools

- General purpose libraries and utilities are often absent
- Lacking especially in higher-level languages

Vector processor

- Limited scientific applications
- Limited flexibility

Data control paths unprotected, fault handling lacks robustness

Special Purpose Accelerators

FEEDING THE BEASTS

Programming GPUs

iCSC2008, Andrzej Nowak, CERN openlab

Development kits for GPUs - CUDA

- CUDA stands for "Compute Unified Device Architecture"
- General purpose development kit for the G80 chip
- C supported
- Open64 based compiler
- CUDA software includes BLAS and FFT libraries; areas of application:
 - Parallel bitonic sort
 - Matrix multiplication
 - Matrix transposition
 - Performance profiling using timers
 - Parallel prefix sum of large arrays
 - Image convolution
- Deviations from the IEEE floating point standard

Development kits for GPUs – CTM

- ATI/AMDs counterpart to CUDA
- CTM stands for "Close To Metal"
 - A little bit too close, perhaps...
- Good access to the native instruction set and memory
- Supported by Radeon cards (from R580 on) and FireStream processors (based on the X1900)
- AMD claims CTM delivers 8x the performance of "traditional" GPGPU methods – OpenGL or DirectX
- Open source

Development kits for GPUs – Rapid Mind (1)

- Multi-core and GPGPU development platform
- Mostly for graphics processing
- An API library for C++

Development kits for GPUs – Rapid Mind (2)

Features

- Code optimization
- Automatic load balancing
- Data management and diagnostics

Backends:

- Intel and AMD CPUs
- NVIDIA and ATI/AMD GPUs
- IBM Cell Processor
 - Cell Blade
 - Cell Accelerator Board
 - Sony Playstation 3

Development kits for GPUs - Brook

- Stanford University's GPGPU library
- A derivative of ANSI C
- Backends: OpenGL 1.3+, DirectX 9+, CTM
- Runs on Linux, Windows, Mac OS X; BSD license
- 410 GFLOPS cited (DX9, ATI HD 2900 XT)
- Development picked up again in 2007

Special Purpose Accelerators

INSIDE THE HARDWARE

A peek into commodity gaming gear of today and tomorrow

NVIDIA G80

- Stream processor developed by NVIDIA
- Moved away from traditional GPU design
 - Uniform shader model
 - DirectX 10 support
- 128 stream processors
- 330 GFLOPS peak
- Second generation: G92

AMD FireStream

- Stream processor developed by ATI
- Targets not only gamers, but the HPC community as well
- A FireStream general purpose extension card exists
 - Can be used as a floating point coprocessor
- Specs:
 - 48 pixel shaders
 - 600 MHz clock
- Part of AMD Torrenza

Intel Larrabee

- 45nm process, 1.7 2.5 GHz, > 150W
- 16-24 in order cores for pixel/vertex shading
 - 4 threads per core, capable of 2 double-precision FP ops per cycle

SPECULATIVE INFORMATION. Source: ArsTechnica

iCSC2008, Andrzej Nowak, CERN openlab

ClearSpeed cards

- Attached to the PCI bus (or PCIe)
- Central point: the CSX600 chip
 - 96 compute engines
 - 64-bit floating point capability
 - Full IEEE floating point compliance
- 2 chips, 80 GFLOPS per board
- They claim to have the highest FLOP/Watt (2GFLOP/Watt)
 - 30 Watts per board

Toolkit available

- C-based compiler
- Development tools assembler, debugger, profiling tools
- BLAS, LAPACK available

AMD Torrenza

- An initiative to link coprocessors with AMD Opteron systems
 - Hyper Transport
 - PCIe
- Related to the AMD Fusion platform project
- Example conforming products:
 - Qlogic Infinipath network adapters
 - DRC coprocessor modules (Xilinx Virtex-4 FPGA)
 - XtremeData coprocessor modules (Altera Stratix II FPGA)
- IBM Roadrunner supercomputer will link 16'000 Opteron systems and 16'000 CELL systems to reach 1 petaflop

Other mainstream accelerators

EMU10k1 (1998)

- DSP processor for audio applications (SB Live)
- 1000 MIPS
- 2.5 M transistors

EMU20k1 (2005)

- DSP processor for audio applications (SB X-FI)
- 10'000 MIPS
- 50 M transistors

KillerNIC

- Network acceleration card
- Offloads common network operations from the CPU

Possible future scenarios

- ? CPUs will feature more and more functionality integrated on a single chip
- ? The evolution of FPGAs will facilitate the delivery of multipurpose reconfigurable accelerators
- ? GPUs will become more versatile, with double-precision floating point support
- ? As sophisticated technologies become more available and faster interconnects settle in for good, general purpose accelerators will enter the mainstream
- ? We will see more accelerator hardware from startups

Predictions for the future

- The graphics accelerator market will continue to grow and evolve at a rapid pace due to consumer demand
- Programming graphics accelerating devices will become easier with time, as hardware manufacturer's incorporate GPGPU friendly changes into their products
- Shrinking manufacturing processes will ensure rapid hardware evolution – better logic, more logic on a single chip

Special Purpose Accelerators

Q&A

iCSC2008, Andrzej Nowak, CERN openlab